At the behavioral level, large power savings are possible by shutting down unused operations, which is commonly referred to as power management. However, operation scheduling has a significant impact on the potential for power saving via power management. In this paper, we present an integer linear programming (ILP) model to formally formulate the simultaneous application of operation scheduling and power management in high level synthesis. Our objective is to maximize the power saving under both the timing constraints and the resource constraints. Note that our approach guarantees solving the problem optimally. Compared with previous work, experimental data consistently show that our approach has significant relative improvement in the power savings.
Masaaki IIJIMA Kayoko SETO Masahiro NUMA Akira TADA Takashi IPPOSHI
Instability of SRAM memory cells derived from aggressive technology scaling has been recently one of the most significant issues. Although a 7T-SRAM cell with an area-tolerable separated read port improves read margins even at sub-1V, it unfortunately results in degradation of write margins. In order to assist the write operation, we address a new memory cell employing a look-ahead body-bias which dynamically controls the threshold voltage. Simulation results have shown improvement in both the write margins and access time without increasing the leakage power derived from the body-bias.
Mikyung KANG Dong-In KANG Jinwoo SUH Junghoon LEE
This paper proposes a low power real-time packet scheduling scheme that reduces power consumption and network errors on wireless local area networks. The proposed scheme is based on the dynamic modulation scheme which can scale the number of bits per symbol when time slots are unused, and the reclaiming scheme which can switch the primary polling schedule when a specific station falls into a bad state. Built on top of the EDF scheduling policy, the proposed scheme enhances the power performance without violating the constraints of subsequent real-time streams. The simulation results show that the proposed scheme enhances success ratio and reduces power consumption.
Hiroshi SHINOHARA Hideaki MONJI Masahiro IIDA Toshinori SUEYOSHI
High power consumption is a constraining factor for the growth of programmable logic devices. We propose two techniques in order to reduce power consumption. The first is a technique for creating contexts. This technique uses data-dependent circuits and wire sharing between contexts. The second is a technique for switching the contexts. In this paper, we evaluate the capability of the two techniques to reduce power consumption using a multi-context logic device. As a result, as compared with the original circuit, our multi-context circuits reduced the power consumption by 9.1% on an average and by a maximum of 19.0%. Furthermore, applying our resource sharing technique to these circuits, we achieved a reduction of 10.6% on an average and a maximum reduction of 18.8%.
Jong-Phil HONG Seok-Ju YUN Sang-Gug LEE
A complementary cross-coupled differential Colpitts voltage controlled oscillator (VCO) is reported. The combination of gm-boosting and the complementary transistors allows record low power integrated VCO implementation. The proposed VCO and the corresponding parallel quadrature VCO (P-QVCO) are implemented using 0.25-µm CMOS technology for 1.8 GHz operation. Measurements for the VCO and P-QVCO show phase noise of -116.8 and -117.7 dBc/Hz at 1 MHz offset, while dissipating only 0.4 and 1.1 mA from a 0.9-V supply, respectively.
Because the leakage current of a digital circuit depends on the states of the circuit's logic gates, assigning a minimum leakage vector (MLV) for the primary inputs and the flip-flops' outputs of the circuit that operates in the sleep mode is a popular technique for leakage current reduction. In this paper, we propose a novel probability-based algorithm and technique that can rapidly find an MLV. Unlike most traditional techniques that ignore the leakage current overhead of the newborn vector controller, our technique can take this overhead into account. Ignoring this overhead during solution space exploration may bring a side effect that is misrecognizing a non-optimal solution as an optimal one. Experimental results show that our heuristic algorithm can reduce the leakage current up to 59.5% and can find the optimal solutions on most of the small MCNC benchmark circuits. Moreover, the required CPU time of our probability-based program is significantly less than that of a random search program.
Yasuhiro TAKAHASHI Toshikazu SEKINE Michio YOKOYAMA
An adiabatic logic is a technique to design low power digital VLSI's. This paper describes the design and VLSI implementation of a multiplier using a two phase drive adiabatic dynamic CMOS logic (2PADCL) circuit. Circuit operation and performance have been evaluated using a 44-bit 2PADCL multiplier fabricated in a 1.2 µm CMOS process. The experimental results show that the multiplier was operated with clock frequencies 800 kHz. The total power dissipation of the 44-bit 2PADCL multiplier was also 5.19 mW at the 1.5 V DC power supply voltage.
Masahiro FUKUI Sayaka IWAKOSHI Tatsuya KOYAGI
Accompanying with the rapid popularization of portable equipments, it becomes very important to make the battery lifetime longer without increasing the battery size. Especially toward the ubiquitous computing age, long battery lifetime in a tight size limitation will be highly demanded. It will be invaluable for intelligent sensor for cars and robots, too. This paper proposes an algorithm to optimize the battery lifetime in the restriction of total size, by simultaneous analysis of operation condition of battery, buck converter, and LSI. We discuss accurate design models of those components at the same time.
Young-Ju KIM Young-Jae CHO Doo-Hwan SA Seung-Hoon LEE
This work proposes a 10 b 200 MS/s 1.8 mm2 83 mW 0.13 µm CMOS ADC based on highly linear integrated capacitors for high-quality video system applications such as next-generation DTV and radar vision and wireless communication system applications such as WLAN, WiMax, SDR, LMDS, and MMDS simultaneously requiring low voltage, low power, and small area at high speed. The proposed 3-stage pipeline ADC optimizes chip area and power dissipation at the target resolution and sampling rate. The proposed ADC employs two versions of the SHA with gate-bootstrapped NMOS switches and conventional CMOS switches to verify and compare the input sampling effectiveness. Both of the two versions of the wide-band low-noise SHA maintain 10 b input accuracy at 200 MS/s. The proposed all signal-isolated 3-D completely symmetric capacitor layout reduces the device mismatch of two MDACs by isolating each unit capacitor from all neighboring signal lines with all the employed metal lines and by placing extra internal metal lines with a fixed internal bias voltage between signal lines connecting the bottom plate of each unit capacitor. The low-noise on-chip current and voltage references with internal RC filters can select optional off-chip voltage references. The prototype ADC is implemented in a 0.13 µm 1P8M CMOS process. The measured DNL and INL are within 0.24 LSB and 0.35 LSB while the ADC shows a maximum SNDR of 54 dB and 48 dB and a maximum SFDR of 67 dB and 61 dB at 200 MS/s and 250 MS/s, respectively. The ADC with an active die area of 1.8 mm2 consumes 83 mW at 200 MS/s and at a 1.2 V supply.
Chen-Ming HSU Tzong Chee YO Ching-Hsing LUO
In this paper, an ultra-low power variable-resolution sigma-delta (ΣΔ) modulator for biomedical application is presented. The resolution of proposed modulator can be adjusted by switching its sampling frequency and architecture. The architecture is switched between second-order single-loop modulator and fourth-order cascaded second stage noise shaped modulator to reach different resolution requirement. The proposed sigma-delta modulator is implemented by single phase integrators based on a fully differential switched-capacitor circuit. The digital cancellation logic is embedded in the chip so that it would easily be integrated with biomedical instrument for effective acquisition. Experimental results of the proposed variable-resolution ΣΔ modulator fabricated in standard CMOS 0.18 µm technology confirm the expected specifications from 65 dB signal-to-noise distortion to 96 dB with 1 kHz bandwidth and power consumption range from 48 µW to 360 µW with a 1.8 V battery supply.
A new level shifter is proposed in this paper that mitigates the contention problem between its pull-up and pull-down switches without suffering the delay penalty. Comparing this new one with two conventional shifters (CLS-1 and CLS-2) indicates that CLS-1 and CLS-2 have the delay times which are 308% and 26% slower than the proposed shifter when VDDL/VDDH=0.3 and the fan-out=2, respectively. In addition, the comparison of power-delay products shows CLS-2 consumes 28.5% more energy than the proposed shifter. For the layout area, the proposed shifter needs only 15% more than CLS-2. By comparing the propagation delay times, the power-delay products, and the area overhead, the proposed shifter is considered very suitable to future Very Deep Sub-Micron (VDSM) technologies with low-voltage applications.
Yibo WANG Yici CAI Xianlong HONG Yi ZOU
Buffer insertion plays a great role in modern global interconnect optimization. But too many buffers exhaust routing resources, and result in the rise of the power dissipation. Unfortunately, simplified delay models used by most of the present buffer insertion algorithms may introduce redundant buffers due to the delay estimation errors, whereas accurate delay models expand the solution space significantly, resulting in unacceptable runtime. Moreover, the power dissipation problem becomes a dominant factor in the state-of-the-art IC design. Not only transistor but also interconnect should be taken into consideration in the power calculation, which makes us have to use an accurate power model to calculate the total power dissipation. In this paper, we present two stochastic optimization methods, simulated annealing and solution space smoothing, which use accurate delay and power models to construct buffered routing trees with considerations of buffer/wire sizing, routing obstacles and delay and power optimization. Experimental results show our methods can save much of the buffer area and the power dissipation with better solutions, and for the cases with pins ≤ 15, the runtime of solution space smoothing is tens of times faster.
Kazutami ARIMOTO Toshihiro HATTORI Hidehiro TAKATA Atsushi HASEGAWA Toru SHIMIZU
Many embedded system application in ubiquitous network strongly require the high performance SoC with overcoming the physical limitations in the advanced CMOS. To develop these SoC, the continuous design efforts have been done. The initial efforts are the primitive level circuit technique and power switching control method for suppressing the standby currents. However, the additional physical limitations and system enhancements becomes main factors, the new design efforts have been proposed. These design efforts are the application-oriented technologies from the system level to device level. This paper introduces the self voltage controlled technique to cancel the PVT (process, voltage, and temperature) variation, power distribution and power management for cellular phone application, parallel algorithm and optimized layout DSP, and massively parallel fine-grained SIMD processor for next multimedia application. The high performance SoC for the embedded are achieved by providing the components of the system level IPs and making the application oriented SoC platform.
Masaaki IIJIMA Masayuki KITAMURA Masahiro NUMA Akira TADA Takashi IPPOSHI Shigeto MAEGAWA
In this paper, we propose an Active Body-biasing Controlled (ABC)-Bootstrap PTL (Pass-Transistor Logic) on PD-SOI for ultra low power design. Although simply lowering the supply voltage (VDD) causes a lack of driving power, our boosted voltage scheme employing a strong capacitive coupling with ABC-SOI improves a driving power and allows lower voltage operation. We also present an SOI-SRAM design boosting the word line (WL) voltage higher than VDD in short transition time without dual power supply rails. Simulation results have shown improvement in both the delay time and power consumption.
Fayez Robert SALIBA Hiroshi KAWAGUCHI Takayasu SAKURAI
We report an SRAM with a 90% reduction of active-leakage power achieved by controlling the supply voltage. In our design, the supply voltage of a selected row in the SRAM goes up to 1 V, while that in other memory cells that are not selected is kept at 0.3 V. This suppresses active leakage because of the drain-induced barrier lowering (DIBL) effect. To avoid unexpected flips in the memory cells, the wordline voltage is controlled so that it is always lower than the supply voltage in the proposed SRAM, with a self-alignment timing generator. The additional area overhead of the timing generator is 3.5%.
Hiroaki SUZUKI Woopyo JEONG Kaushik ROY
Demands for the low power VLSI have been pushing the development of aggressive design methodologies to reduce the power consumption drastically. To meet the growing demand, we propose low power adders that adaptively select supply voltages based on the input vector patterns. First, we apply the proposed scheme to the Ripple Carry Adder (RCA). A prototype design by a 0.18 µm CMOS technology shows that the Adaptive VDD 32-bit RCA achieves 25% power improvement over the conventional RCA with similar speed. The proposed adder cancels out the delay penalty, utilizing two innovative techniques: carry-skip techniques on the checking operands, and the use of Complementary Pass Transistor Logic (CPL) with dual supply voltage for level conversion. As an expansion to faster adder architectures, we extend the proposal to the Carry-Select Adders (CSA) composed of the RCA sub-blocks. We achieved 24% power improvement on the 128-bit CSA prototype over a conventional design. The proposed scheme also achieves stand-by leakage power reduction--for 32-bit and 128-bit Adaptive RCA and CSA, respectively, 62% and 54% leakage reduction was possible.
Gi-Ho PARK Kil-Whan LEE Tack-Don HAN Shin-Dug KIM
This paper presents a dual data cache system structure, called a cooperative cache system, that is designed as a low power cache structure for embedded processors. The cooperative cache system consists of two caches, i.e., a direct-mapped temporal oriented cache (TOC) and a four-way set-associative spatial oriented cache (SOC). The cooperative cache system achieves improvement in performance and reduction in power consumption by virtue of the structural characteristics of the two caches designed inherently to help each other. An evaluation chip of an embedded processor having the cooperative cache system is manufactured by Samsung Electronics Co. with 0.25 µm 4-metal process technology.
Kiichi NIITSU Noriyuki MIURA Mari INOUE Yoshihiro NAKAGAWA Masamoto TAGO Masayuki MIZUNO Takayasu SAKURAI Tadahiro KURODA
A daisy chain of current-driven transmitters in inductive-coupling complementary metal oxide semiconductor (CMOS) links is presented. Transmitter power can be reduced since current is reused by multiple transmitters. Eight transceivers are arranged with a pitch of 20 µm in 0.18 µm CMOS. Transmitter power is reduced by 35% without sacrificing either the data rate (1 Gb/s/ch) or BER (<10-12) by using a 4-transmitter daisy chain. A coding technique for efficient use of daisy chain transmitters is also proposed. With the proposed coding technique, additional power reduction can be achieved.
Fukashi MORISHITA Hideyuki NODA Isamu HAYASHI Takayuki GYOHTEN Mako OKAMOTO Takashi IPPOSHI Shigeto MAEGAWA Katsumi DOSAKA Kazutami ARIMOTO
We propose a novel capacitorless twin-transistor random access memory (TTRAM). The 2 Mb test device has been fabricated on 130 nm SOI-CMOS process. We demonstrate the TTRAM cell has two data-storage states and confirm the data retention time of 100 ms at 80. TTRAM process is compatible with the conventional SOI-CMOS and never requires any additional processes. A 6.1 ns row-access time is achieved and 250 MHz operation can be realized by using 2 bank 8 b-burst mode.
Viet-Hoang LE Trung-Kien NGUYEN Seok-Kyun HAN Sang-Gug LEE
This letter presents a 900 MHz ZigBee RF transmitter front-end with on-chip LO suppression circuit at the output. To suppress the LO leakage at the RF output, a novel LO suppression circuit is adopted at the up-conversion mixer. The RF transmitter implemented in 0.18 µm CMOS shows more than 28 dB of LO suppression over a wide range of the baseband signal power variation.